「view this page in B3 βῆτα server」

Revisions №61331

branch: master 「№61331」
Commited by: Rocco Moretti
GitHub commit link: 「35db91cc14bc55e6」 「№4766」
Difference from previous tested commit:  code diff
Commit date: 2020-07-09 12:19:27
linux.clang linux.gcc linux.srlz mac.clang
debug
release
unit
PyRosetta4.notebook gcc-9.gcc.python37.PyRosetta4.unit linux.clang.cxx11thread.serialization.python37.PyRosetta4.unit linux.gcc.python36.PyRosetta4.unit mac.PyRosetta.unit build.clean.debug alpine.gcc.build.debug clang-10.clang.cxx11thread.mpi.serialization.tensorflow.build.debug gcc-9.gcc.build.debug mysql postgres linux.clang.python36.build.debug linux.zeromq.debug mpi mpi.serialization linux.icc.build.debug OpenCL mac.clang.python36.build.debug build.header build.levels build.ninja_debug graphics static build.xcode beautification code_quality.clang_analysis code_quality.clang_tidy code_quality.cppcheck serialization code_quality.submodule_regression integration.mpi integration.release_debug integration.tensorflow integration.thread integration performance profile release.source linux.clang.score linux.gcc.score mac.clang.score linux.scripts.pyrosetta scripts.rosetta.parse scripts.rosetta.validate scripts.rosetta.verify linux.clang.unit.release linux.gcc.unit.release gcc-9.gcc.unit util.apps

Merge pull request #4766 from RosettaCommons/roccomoretti/vtune_1 Some simple efficiency tweaks. I was playing around with the Intel VTune Profiler (on relax runs), and noticed a few "high spots" which could be addressed without too much restructuring. Mainly these were in reducing the number of memory allocations, though there were a few runtime-related issues. I don't think there's substantial performance improvements here, but I think all of the changes fall into the category of "not worse", either in runtime or comprehensibility.

...
Test: mac.clang.python27.build.xcode

 View log

Loading...

 View log in dialog  View log in log in separate window
Test: linux.gcc.mpi.serialization.integration.mpi

Failed sub-tests (click for more details):
threefold_symm_peptide_design